周朝有多少年 周朝建立了多少年
2023-01-30
更新時(shí)間:2022-08-14 11:26:34作者:未知
《幾何原本》的影響和意義
《幾何原本》在幾何學(xué)上的影響和意義
在幾何學(xué)發(fā)展的歷史中,歐幾里得的《幾何原本》起了重大的歷史作用。這種作用歸結(jié)到一點(diǎn),就是提出了幾何學(xué)的“根據(jù)”和它的邏輯結(jié)構(gòu)的問(wèn)題。在他寫的《幾何原本》中,就是用邏輯的鏈子由此及彼的展開(kāi)全部幾何學(xué),這項(xiàng)工作,前人未曾作到。
《幾何原本》的誕生,標(biāo)志著幾何學(xué)已成為一個(gè)有著比較嚴(yán)密的理論系統(tǒng)和科學(xué)方法的學(xué)科。并且《幾何原本》中的命題1.47,證明了在西方是歐幾里得最先發(fā)現(xiàn)的勾股定理,從而說(shuō)明了歐洲是西方最早發(fā)現(xiàn)勾股定理的大洲。
《幾何原本》在論證方法上的影響
關(guān)于幾何論證的方法,歐幾里得提出了分析法、綜合法和歸謬法。所謂分析法就是先假設(shè)所要求的已經(jīng)得到了,分析這時(shí)候成立的條件,由此達(dá)到證明的步驟;綜合法是從以前證明過(guò)的事實(shí)開(kāi)始,逐步的導(dǎo)出要證明的事項(xiàng)。
歸謬法是在保留命題的假設(shè)下,否定結(jié)論,從結(jié)論的反面出發(fā),由此導(dǎo)出和已證明過(guò)的事實(shí)相矛盾或和已知條件相矛盾的結(jié)果,從而證實(shí)原來(lái)命題的結(jié)論是正確的,也稱作反證法。
《幾何原本》作為教材的影響
從歐幾里得發(fā)表《幾何原本》到如今,已經(jīng)過(guò)去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長(zhǎng)期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。
少年時(shí)代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開(kāi)始他認(rèn)為這本書的內(nèi)容沒(méi)有超出常識(shí)范圍,因而并沒(méi)有認(rèn)真地去讀它,而對(duì)笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。
后來(lái),牛頓于1664年4月在參加特列臺(tái)獎(jiǎng)學(xué)金考試的時(shí)候遭到落選,當(dāng)時(shí)的考官巴羅博士對(duì)他說(shuō):“因?yàn)槟愕膸缀位A(chǔ)知識(shí)太貧乏,無(wú)論怎樣用功也是不行的?!边@席談話對(duì)牛頓的震動(dòng)很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
《幾何原本》的缺憾
但是,在人類認(rèn)識(shí)的長(zhǎng)河中,無(wú)論怎樣高明的前輩和名家,都不可能把問(wèn)題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問(wèn)題并沒(méi)有得到徹底的解決,他的理論體系并不是完美無(wú)缺的。
比如,對(duì)直線的定義實(shí)際上是用一個(gè)未知的定義來(lái)解釋另一個(gè)未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過(guò)這個(gè)概念。
有些被歐幾里得作為不證自明的公理,卻難以自明。比如“第五平行公設(shè)”,歐幾里得在《幾何原本》一書中斷言:“通過(guò)已知直線外一已知點(diǎn),能作且僅能作一條直線與已知直線平行。”
這個(gè)結(jié)果在普通平面當(dāng)中尚能夠得到經(jīng)驗(yàn)的印證,那么在無(wú)處不在的閉合球面之中(地球就是個(gè)大曲面)這個(gè)平行公理卻是不成立的。俄國(guó)人羅伯切夫斯基和德國(guó)人黎曼由此創(chuàng)立了非歐幾何學(xué)。